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Section 1

Introduction to Vectors

1.1 Definition

Quantities which only have . . . . . . . . . . . . . . . . . . . . . . . . . .magnitude are known as scalars.

Example: . . . . . . . . . . . . . .speed of an aeroplane.

� Definition 1

Quantities which have both . . . . . . . . . . . . . . . . . . . . . . . . . .magnitude and . . . . . . . . . . . . . . . . . . . . . .direction
are known as vectors.

Example: . . . . . . . . . . . . . . . . . . .velocity of an aeroplane.

� Definition 2

Other examples of vector forces:

• . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .acceleration

• . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .displacement

• . . . . . . . . . . . .force

• . . . . . . . . . . . . . . . . . . . . . . . . . . . .momentum

L Fill in the spaces
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6 Introduction to Vectors – Representation

1.2 Representation

1.2.1 Geometric

Vector quantities can be represented using a directed line segment or arrow.

• The . . . . . . . . . . . . . . .length of the arrow represents the . . . . . . . . . . . . . . . . . . . . . . . . . .magnitude

• The . . . . . . . . . . . . . . . . . . . . . . . . . .arrowhead shows its direction.

L Fill in the spaces

Two vectors are equal if they have the same . . . . . . . . . . . . . . . . . . . . . . . . . .magnitude and

. . . . . . . . . . . . . . . . . . . . . .direction .

� Definition 3

The position of the starting point (tail) and ending point (arrowhead) does . . . . . . . .not
matter.

º Corollary 1

Given
#    »

PQ as shown, draw two other vectors, a
˜
=

#    »

AB and e
˜
=

#    »

EF such that

#    »

PQ =
#    »

AB =
#    »

EF

P

Q
p
˜

� Example 1

1.2.2 Algebraic

From Example 1, there are three ways of writing the vector drawn:

• #    »

PQ: the vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .commencing from the point P and . . . . . . . . . . . . . . . . .ending
at point Q.

• #»p or p
˜
: NESA syllabus documentation, handwritten.

Introduction to Vectors NORMANHURST BOYS’ HIGH SCHOOL



Introduction to Vectors – Vector arithmetic 7

1.3 Vector arithmetic

1.3.1 Addition

o Use a ruler!

V Important note

For vectors p
˜
and q

˜
, to perform p

˜
+ q
˜
:

1. Draw p
˜
.

2. Draw q
˜
, starting from the arrowhead of p

˜
.

3. Draw . . . . . . . . . . . . . . . . . . . . . .resultant vector from the . . . . . . . .tail of p
˜
to the . . . . . . . . . . . .head

of q
˜
.

p
˜

q
˜

³ Steps

1.3.2 Subtraction/negative vectors

If p
˜

is a vector, then −p
˜

is equal in . . . . . . . . . . . . . . . . . . . . . . . . . .magnitude but

. . . . . . . . . . . . . . . . . . . . .opposite in . . . . . . . . . . . . . . . . . . . . . .direction

� Definition 4

(Haese et al., 2015) PQRS is a parallelogram where
#    »

PQ = a
˜
and

#    »

QR = b
˜
. Find

vector expressions for:

P S

Q R

a
˜

b
˜

(a)
#    »

QP (b)
#    »

RQ (c)
#   »

SR (d)
#   »

SP

� Example 2

NORMANHURST BOYS’ HIGH SCHOOL Introduction to Vectors



8 Introduction to Vectors – Vector arithmetic

1.3.3 Magnitude and zero vector

The magnitude of a vector p
˜
is given by

∣∣∣p
˜

∣∣∣.
� Definition 5

The zero vector has magnitude zero, i.e.
∣∣∣p
˜

∣∣∣ = 0. Direction is not . . . . . . . . . . . . . . . . . .defined

Usually written as 0
˜
(handwritten: 0

˜
).

� Definition 6

1.3.4 Scalar multiplication

If p
˜
is a vector, and λ ∈ R,

• If λ > 1, then λp
˜
extends the . . . . . . . . . . . . . . . . . . . . . . . . . . .magnitude to λ

∣∣∣p
˜

∣∣∣.

( . . . . . . . . . . . . . . . . . . . .Extends the vector p
˜
by a factor of λ).

• If 0 < λ < 1, then λp
˜ . . . . . . . . . . . . . . . . . .shrinks the magnitude.

• If λ = 0, then λp
˜
= 0
˜
.

• If λ < 0, then λp
˜

sees the magnitude scaled by |λ| and direction

. . . . . . . . . . . . . . . . . . . .reverses .

� Definition 7

• p
˜
and λp

˜
, λ > 0 are . . . . . . . . . . . . . . . . . . .parallel .

• p
˜
and λp

˜
, λ < 0 are . . . . . . . . . . . . . . . . . . . . . . . . . . . .antiparallel .

© Laws/Results

Scaling vector investigation

GeoGebra

Introduction to Vectors NORMANHURST BOYS’ HIGH SCHOOL
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Introduction to Vectors – Vector arithmetic 9

Vector addition - what shape is always formed when adding vectors?

GeoGebra

(Haese et al., 2015)

Given vectors

r
˜

and
s
˜ (diagrams drawn to scale),

construct geometrically:

(a) −r
˜

(b) 2s
˜

(c) 1
2
r
˜

(d) −3
2
s
˜

(e) 2r
˜
− s
˜

(f) 2r
˜
+ 3s
˜

(g) 1
2
r
˜
+ 2s
˜

(h) 1
2

(
r
˜
+ 3s
˜
)

� Example 3

NORMANHURST BOYS’ HIGH SCHOOL Introduction to Vectors
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10 Introduction to Vectors – Vector arithmetic

(Haese et al., 2015) PQRSTU is a regular hexagon. If
#    »

PQ = a
˜
and

#    »

QR = b
˜
, find in

terms of a
˜
and b

˜
:

X
R

QP

U

ST

a
˜

b
˜

(a)
#    »

PX

(b)
#   »

PS

(c)
#     »

QX

(d)
#   »

RS

� Example 4

Introduction to Vectors NORMANHURST BOYS’ HIGH SCHOOL



Introduction to Vectors – Vector equations 11

1.4 Vector equations

Vectors can be
• Added

• Have scalar multiplication applied
in the same manner as usual scalar numbers, with the same
commutative/associative/distributive laws.

© Laws/Results

(MATH1131 Mathematics 1A and MATH1141 Higher Mathematics 1A Algebra Notes ,
2018) Fully simplify: 3(2a

˜
− b
˜
) + (a

˜
− 2b
˜
).

� Example 5

(MATH1131 Mathematics 1A and MATH1141 Higher Mathematics 1A Algebra Notes ,

2018) Fully simplify: 2
#    »

AC − #    »

OC +
#    »

OA.

� Example 6

• Draw picture if it’s slightly uncertain what is
#    »

AC.

• Convert the vector arrow notation
#    »

OC to the single variable notation c
˜
.

V Important note

NORMANHURST BOYS’ HIGH SCHOOL Introduction to Vectors



12 Introduction to Vectors – Vector equations

(MATH1131 Mathematics 1A and MATH1141 Higher Mathematics 1A Algebra Notes ,
2018) In △OAB, D and E are points such that OD : DA = OE : EB = 1 : 2. Prove
that
(a) DE is parallel to AB

(b) the length of DE is
1

3
times that of AB.

� Example 7

Ex 3A-3C (Haese et al., 2015)
(More introductory type questions)

• Every second subpart

Ex 8A (Pender et al., 2019)

• Q1-19

• o Q20-21

Î Further exercises

Introduction to Vectors NORMANHURST BOYS’ HIGH SCHOOL



Section 2

Simple Vector Geometry

2.1 Vector components

2.1.1 Unit vector

The unit vector has . . . . . . . . . . . . . . . . . . . . . . . . . . .magnitude 1.

� Definition 8

For every vector p
˜
there are two normalised (corresponding unit) vectors:

• p̂
˜
=

p
˜∣∣∣p
˜

∣∣∣
. . . . . . . . . . . . . . . . . . . .Parallel to p

˜
.

• −p̂
˜
= −

p
˜∣∣∣p
˜

∣∣∣
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Antiparallel to p

˜
.

© Laws/Results

Unit vector

GeoGebra

13
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14 Simple Vector Geometry – Vector components

2.1.2 Cartesian basis vectors/components

In the Cartesian plane, define the basis vectors to be unit vectors in the

• x direction to be i
˜

• y direction to be j
˜

x

y

1

1

2

2

i
˜

j
˜

� Definition 9

Introduction to Vectors NORMANHURST BOYS’ HIGH SCHOOL



Simple Vector Geometry – Vector components 15

• The position (5, 3) can now be
represented via a translation vector.

x

y

b

1 2 3 4 5

1

2

3

O

Q

• . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Component notation:

#    »

OQ = 5i
˜
+ 3j
˜. . . . . . . . . . . . .

• . . . . . . . . . . . . . . . . . . . .Column . . . . . . . . . . . . . . .vector
notation:

(
5
3

)
= 5

(
1
0

)
+ 3

(
0
1

)

L Fill in the spaces

The point Q(x, y) has position vector

#    »

OQ =

(
x
y

)
= x i

˜
+ y j
˜

where
• The component form is x i

˜
+ y j
˜

• Represented in column vector notation:

(
x
y

)
.

• Year 7-10 ordered pair notation: (x, y).

� Definition 10

Pender et al. (2019) and Mathematics Extension 1 Stage 6 Syllabus

(2017, Revised 18/11/2019) both use brackets instead of parentheses for the
column vector delimiters, e.g. [

x
y

]
=

(
x
y

)

Tertiary education providers however, tend to use parentheses.

V Important note

A ship S leaves port O and sails north-east at 20 km/h. Describe its position after 6
hours by giving its position vector as a sum of multiples of the basis vectors i

˜
and j

˜
.

� Example 8

NORMANHURST BOYS’ HIGH SCHOOL Introduction to Vectors



16 Simple Vector Geometry – Vector components

2.1.3 Position vs displacement vectors

A position vector of a point P is the vector
#    »

OP , where the vector commences at the

. . . . . . . . . . . . . .origin and finishes at P .

� Definition 11

A position vector gives the . . . . . . . . . . . . . . . . . . . . .absolute . . . . . . . . . . . . . . . . . . .location of a point in the
plane.

• Each point P in the Cartesian plane corresponds to the position vector . . . . . . . .
#    »

OP

A displacement vector is the vector
#    »

AB, where the vector commences at the point A
and finishes at B.

� Definition 12

A displacement vector gives the . . . . . . . . . . . . . . . . . .relative . . . . . . . . . . . . . . . . . . .position of a point from
another.

• Vector of point A relative to point B: . . . . . . .
#    »

BA

§ Position Vector Investigation - see how a position vector is different to a
displacement vector.

GeoGebra

For two points P and Q with position vectors p
˜
=

(
p1
p2

)
and q

˜
=

(
q1
q2

)
respectively,

x

y

p
˜ q

˜

b

b
P

Q

#    »

OP +
#    »

PQ =
#    »

OQ
. . . . . . .

#    »

PQ =
#    »

OQ− #    »

OP
. . . . . . . . . . . . . . . . . . . . .

= q
˜
− p
˜. . . . . . . . . . .

=

(
q1 − p1
q2 − p2

)

#    »

OQ+
#    »

QP =
#    »

OP. . . . . . .

#    »

QP =
#    »

OP − #    »

OQ
. . . . . . . . . . . . . . . . . . . . .

= p
˜
− q
˜. . . . . . . . . . .

=

(
p1 − q1
p2 − q2

)

© Laws/Results

Introduction to Vectors NORMANHURST BOYS’ HIGH SCHOOL
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Simple Vector Geometry – Vector components 17

(Haese et al., 2015) AB is a diameter of a circle with centre C(−1, 2). If B is (3, 1),
find:

b

b

b

B(3, 1)

A
C(−1, 2)

(a)
#    »

BC

(b) the coordinates of A.

� Example 9

[2020 Independent Ext 1 Trial Q3] In the diagram, OABC is a paralleogram.

The vector
#    »

OA = a
˜
and

#    »

OC = c
˜
. M is the midpoint of OA. Which of the following

expressions is represented by the vector
#      »

MB?

O A

C B

c
˜

a
˜
M
b

(A) 1
2
a
˜
− c
˜

(B) 1
2
a
˜
+ c
˜

(C) a
˜
− 1

2
c
˜

(D) a
˜
+ 1

2
c
˜

� Example 10

NORMANHURST BOYS’ HIGH SCHOOL Introduction to Vectors



18 Simple Vector Geometry – Vector components

[2020 NEAP Ext 1 Trial Q7] The position vectors of points A and B are a
˜
and

b
˜
respectively. Point C is the midpoint of OB and point D is such that ABCD is a

parallelogram. A
B

C
D

O
Which of the following is the position vector of D?

(A) 3
2
b
˜
+ a
˜

(B) 3
2
b
˜
− a
˜

(C) 1
2
b
˜
− 1

2
a
˜

(D) 1
2
b
˜
− a
˜

� Example 11

Introduction to Vectors NORMANHURST BOYS’ HIGH SCHOOL



Simple Vector Geometry – Vector arithmetic involving column vectors 19

2.2 Vector arithmetic involving column vectors

2.2.1 Addition

If p
˜
=

(
x
y

)
and q

˜
=

(
u
v

)
, then

p
˜
± q
˜
=

(
x± u
y ± v

)

. . . . . . . . . . . . . . . . . . .

= (x± u)i
˜
+ (y ± v)j

˜. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

© Laws/Results

• Add . . . . . . . . . . . . . . . . . . . . . . . . .horizontal components (x direction, i
˜
) with

. . . . . . . . . . . . . . . . . . . . . . . . .horizontal components

• Add . . . . . . . . . . . . . . . . . . .vertical components (y direction, j
˜
) with . . . . . . . . . . . . . . . . . .vertical

components

V Important note

Vector component addition

GeoGebra

(Pender et al., 2019)
1. (a) Given u

˜
= 2 i
˜
− j
˜
and v

˜
= −i

˜
+ 2 j
˜
, find:

i. 2u
˜

ii. 3v
˜

iii. 2u
˜
+ 3v
˜

(b) Draw all five vectors as position vectors. What figure do the origin and
heads of 2u

˜
, 3v
˜
and 2u

˜
+ 3v
˜
form?

2. (a) Given u
˜
=

(
3
1

)
and v

˜
=

(
1
2

)
, find v

˜
− u
˜
.

(b) Draw u
˜
=

#    »

OU and v
˜
=

#    »

OV as position vectors, and mark v
˜
− u
˜
.

� Example 12

NORMANHURST BOYS’ HIGH SCHOOL Introduction to Vectors
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20 Simple Vector Geometry – Vector arithmetic involving column vectors

2.2.2 Scalar multiplication

(Haese et al., 2015) If p
˜
=

(
x
y

)
and k ∈ R then

kp
˜
=

(
kx
ky

)

. . . . . . . . . . . . .

© Laws/Results

Given p
˜
=

(
4
1

)
and q

˜
=

(
2
−3

)
, find:

(a) 3q
˜

(b) p
˜
+ 2q
˜

(c) 1
2
p
˜
− 3q
˜

� Example 13

2.2.3 Magnitude

6 If p
˜
=

(
x
y

)
then

∣∣∣p
˜

∣∣∣ =
√

x2 + y2
. . . . . . . . . . . . . . . . . . . .

© Laws/Results

If p
˜
= 3 i
˜
− 5 j
˜
and q

˜
= −i

˜
− 2 j
˜
, find

∣∣∣p
˜
− 2q
˜

∣∣∣. Answer:
√
26

� Example 14
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Simple Vector Geometry – Vector arithmetic involving column vectors 21

(Haese et al., 2015, Ex 3D) Find k such that the vector is a unit vector.

(a)

(
0
k

)
(b)

(
k
0

)
(c)

(
k
1

)
(d)

(
k
k

)
(e)

(
1
2
k

)

Answer: (a) ±1 (b) ±1 (c) 0 (d) ± 1√
2
(e) ±

√
3

2

� Example 15

(Haese et al., 2015, Ex 3D) Given v
˜
=

(
8
p

)
and

∣∣v
˜
∣∣ =

√
73, find the possible values

of p. Answer: ±3

� Example 16
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22 Simple Vector Geometry – Vector arithmetic involving column vectors

(Haese et al., 2015) If a
˜
= 3 i
˜
− j
˜
, find:

(a) a unit vector in the direction of a
˜

(b) a vector of length 4 units in the direction of a
˜

(c) vectors of length 4 units which are parallel to a
˜
.

Answer: (a) 3√
10

i
˜
− 1√

10
j
˜
(b) 12√

10
i
˜
− 4√

10
j
˜
(c) ±

(
12√
10

i
˜
− 4√

10
j
˜

)

� Example 17

[2020 NSBHS Ext 1 Trial]
#     »

OM = 2 i
˜
+5 j
˜
and

#   »

OT = −3 i
˜
+7 j
˜
. What is the value

of
∣∣∣ #     »

MT
∣∣∣?

(A) 14 (B)
√
98 (C)

√
29 (D)

√
145

� Example 18
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Simple Vector Geometry – Vector arithmetic involving column vectors 23

2.2.4 Direction

If p
˜
=

(
x
y

)
, then the direction of the vector is measured by the . . . . . . . . . . . . .angle formed

by the vector with the positive direction of the horizontal axis, i.e.

tan θ =
y

x

where θ ∈ [0◦, 360◦) (and radians where applicable)

© Laws/Results

o X2 Later in Complex Numbers, θ ∈ (−π, π]. The quadrants used may vary
between contexts - read the context carefully.

V Important note

Components of a vector in terms of the magnitude and direction: if p
˜
= x1 i˜

+y1 j
˜
,

x

y

p
˜
=

( x 1
y 1

)

θ

Py1

x1

x1 = |p| cos θ
. . . . . . . . . . . . . . .

y1 = |p| sin θ
. . . . . . . . . . . . . . .

© Laws/Results
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24 Simple Vector Geometry – Vector arithmetic involving column vectors

(Pender et al., 2019)
(a) Find the vector u

˜
of length 10, with angle 150◦ to the positive direction of the

horizontal axis.

(b) Find the length and angle (exact length, angle to the nearest degree) of
v
˜
= −i

˜
− 2 j
˜
.

Answer: (a) u
˜
= −5

√
3 i
˜
+ 5 j

˜
(b)

∣∣u
˜
∣∣ =

√
5, θ ≈ 243◦.

� Example 19

[2020 JRAHS Ext 1 Trial Q7] How many of the following statements are true?

•
∣∣a
˜
∣∣+
∣∣b
˜
∣∣ =

∣∣a
˜
+ b
˜
∣∣ means that a

˜
and b

˜
have the same direction.

•
∣∣a
˜
∣∣+
∣∣b
˜
∣∣ =

∣∣a
˜
− b
˜
∣∣ means that a

˜
and b

˜
have the opposite directions.

•
∣∣a
˜
∣∣+
∣∣b
˜
∣∣ =

∣∣a
˜
− b
˜
∣∣ means that a

˜
and b

˜
have the same magnitude.

•
∣∣a
˜
∣∣−
∣∣b
˜
∣∣ =

∣∣a
˜
− b
˜
∣∣ means that a

˜
and b

˜
have the same direction.

(A) 1 (B) 2 (C) 3 (D) 4

� Example 20

Ex 3D-3G (Haese et al., 2015)
(More introductory type questions)

• Every second subpart

Ex 8B (Pender et al., 2019)

• Q11-18

Î Further exercises
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Section 3

Vector Geometry with the Dot Product

3.1 Definitions

The dot product between two vectors p
˜
= x1 i˜

+ y1 j
˜
and q

˜
= x2 i˜

+ y2 j
˜
(also known

as scalar product):

p
˜
· q
˜
= x1x2 + y1y2. . . . . . . . . . . . . . . . . . . . . . . .

� Definition 13

Dot Product Insight

GeoGebra

Use p
˜
=

(
p1
p2

)
etc to prove the following:

(a) p
˜
· q
˜
= q
˜
· p
˜
(Commutativity)

(b) p
˜
· p
˜
=
∣∣∣p
˜

∣∣∣
2

(c) p
˜
·
(
q
˜
+ r
˜

)
= p
˜
· q
˜
+ p
˜
· r
˜
(Associativity)

(d)
(
p
˜
+ q
˜

)
·
(
r
˜
+ s
˜
)
= p
˜
· r
˜
+ p
˜
· s
˜
+ q
˜
· r
˜
+ q
˜
· s
˜

� Example 21

25

https://www.geogebra.org/m/N9pvSPf4


26 Vector Geometry with the Dot Product – Definitions

(Haese et al., 2015, Ex 3I) Explain why a
˜
· b
˜
· c
˜
is meaningless.

� Example 22
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Vector Geometry with the Dot Product – Angle between two vectors 27

3.2 Angle between two vectors

The dot product enables the . . . . . . . . . . . . .angle θ between two non-zero vectors to be found.

6 The angle θ between two non-zero vectors p
˜
and q

˜
is related by:

∴ p
˜
· q
˜
=

∣∣∣p
˜

∣∣∣
∣∣∣q
˜

∣∣∣ cos θ
. . . . . . . . . . . . . . . . . . . . . .

� Definition 14

Proof

1. Draw situation representing the angle θ between two vectors p
˜
and q

˜
, and vector

q
˜
− p
˜
.

2. Apply the cosine rule to the triangle:

∣∣∣q
˜
− p
˜

∣∣∣
2

=
∣∣∣p
˜

∣∣∣
2

+
∣∣∣q
˜

∣∣∣
2

− 2
∣∣∣p
˜

∣∣∣
∣∣∣q
˜

∣∣∣ cos θ
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3. Let p
˜
=

(
p1
p2

)
and q

˜
=

(
q1
q2

)
and replace magnitudes with components of p

˜
and q

˜
:

∴ p
˜
· q
˜
=

∣∣∣p
˜

∣∣∣
∣∣∣q
˜

∣∣∣ cos θ
. . . . . . . . . . . . . . . . . . . . . .

4. Consequently,

cos θ =
p
˜
· q
˜∣∣∣p

˜

∣∣∣
∣∣∣q
˜

∣∣∣
. . . . . . . . . . . . .

³ Steps
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28 Vector Geometry with the Dot Product – Angle between two vectors

Geometric results of the dot product

• If p
˜
is perpendicular to q

˜
, then θ = 90◦:

p
˜
· q
˜
=
∣∣∣p
˜

∣∣∣
∣∣∣q
˜

∣∣∣ cos θ

=
∣∣∣p
˜

∣∣∣
∣∣∣q
˜

∣∣∣ cos 90◦
. . . . . . . . . . . . . . . . . . . . . . . . . . .

= 0. .

• If p
˜
is parallel to q

˜
, then θ = 0◦ or 180◦:

p
˜
· q
˜
=
∣∣∣p
˜

∣∣∣
∣∣∣q
˜

∣∣∣ cos θ

=
∣∣∣p
˜

∣∣∣
∣∣∣q
˜

∣∣∣ cos 0◦
. . . . . . . . . . . . . . . . . . . . . . . . .

or
∣∣∣p
˜

∣∣∣
∣∣∣q
˜

∣∣∣ cos 180◦
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

= ±
∣∣∣p
˜

∣∣∣
∣∣∣q
˜

∣∣∣
. . . . . . . . . . . . . . . . .

© Laws/Results

Parallel Vectors investigation

GeoGebra

[2022 Ext HSC Q11] (2 marks) The vectors u
˜

=

(
a
2

)
and v

˜
=

(
a− 7
4a− 1

)
are

perpendicular.

What are the possible values of a? Answer: 2 or − 7

4

� Example 23

(Haese et al., 2015) Consider the points A(2, 1) and B(6,−1) and C(5,−3). Use the
dot product to determine whether △ABC is right angled or not. If so, locate the
right angle. Answer: At B

� Example 24

Introduction to Vectors NORMANHURST BOYS’ HIGH SCHOOL
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Vector Geometry with the Dot Product – Angle between two vectors 29

(Haese et al., 2015) Find the form of all vectors which are perpendicular to

(
3
4

)
.

Answer: k

(
−4
3

)

� Example 25

(Haese et al., 2015) Find a vector of length 3 units which is perpendicular to

(
−1
4

)
.

Answer: 3√
17

(
4
1

)

� Example 26

(Haese et al., 2015) Vectors a
˜
and b

˜
have lengths 5 and

√
7 respectively. The angle

between them is 110◦.

Find the value of a
˜
· b
˜

Answer: −4.525

� Example 27
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30 Vector Geometry with the Dot Product – Angle between two vectors

(Haese et al., 2015) Find the angle between a
˜
=

(
3
−2

)
and b

˜
=

(
1
7

)
Answer: ≈ 116◦

� Example 28

(Haese et al., 2015) Given A(2,−1), B(3, 4) and C(−1, 3), find the size of ∠ABC.
Answer: ≈ 64.7◦

� Example 29

Draw a simple diagram first!
V Important note
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Vector Geometry with the Dot Product – Angle between two vectors 31

[2020 NEAP Ext 1 Trial Q10] The diagram shows OABC, a rhombus in which
#    »

OA =
#    »

CB = a
˜
and

#    »

OC =
#    »

AB = c
˜
.

O A

C B

c
˜

a
˜

c
˜

a
˜

To prove that the diagonals of OABC are perpendicular, it is required to show that

(A) (a
˜
+ c
˜
) · (a
˜
+ c
˜
) = 0

(B) (a
˜
− c
˜
) · (a
˜
− c
˜
) = 0

(C) (a
˜
− c
˜
) · (a
˜
+ c
˜
) = 0

(D) a
˜
· c
˜
= 0

� Example 30

[2020 JRAHS Ext 1 Trial Q10] It is given that a
˜
=

(
−3
m

)
, b
˜
=

(
4
3

)
. If the angle

between vector a
˜
and b

˜
is obtuse angle, what is true for the value of m?

(A) m < 4

(B) m < 4 and m 6= −9
4

(C) m > 4

(D) m 6= 4 and m > −9
4

� Example 31
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32 Vector Geometry with the Dot Product – Angle between two vectors

[2020 Independent Ext 1 Trial Q11] In the diagram, OAB is an acute angled

triangle in which OA = OB. The vector
#    »

OA = a
˜
and

#    »

OB = b
˜
.

O
A

B

a
˜

b
˜

(i) Show that cos∠OAB =
a
˜
· a
˜
− a
˜
· b
˜∣∣a

˜
∣∣ ∣∣a
˜
− b
˜
∣∣ and cos∠OBA =

b
˜
· b
˜
− a
˜
· b
˜∣∣a

˜
∣∣ ∣∣a
˜
− b
˜
∣∣ 4

(ii) Hence show that ∠OAB = ∠OBA by using vector methods. 2

� Example 32
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Vector Geometry with the Dot Product – Angle between two vectors 33

[2020 JRAHS Ext 1 Trial Q12] In the isosceles triangle ABC,
∣∣∣ #    »

AB
∣∣∣ =

∣∣∣ #    »

AC
∣∣∣. D

is the midpoint of side AB and E is the midpoint of side AC.
#    »

CD is perpendicular
to

#    »

BE.

(i) Draw the diagram and label ∠BAC = θ and
∣∣∣ #    »

AD
∣∣∣ = r. 1

(ii) Hence noting that
#    »

CD may be written as
#    »

AD− #    »

AC, or otherwise, use
vector methods to find the value of ∠BAC.

3

� Example 33

Ex 3I-3J (Haese et al., 2015)
(More introductory type questions)

• Every second subpart

Ex 8C (Pender et al., 2019)

• All questions

Î Further exercises
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34 Vector Geometry with the Dot Product – Other geometric proofs

3.3 Other geometric proofs

Geometric proofs involving vectors are vastly different to the Euclidean Geometry
proofs!

V Important note

Use the following as a guide to these proofs:

• . . . . . . . . . . . . . .Draw . . . . . . . . . . . . . . . . . .picture !

• Introduce vectors, by choosing one of the vertices or a point outside the figure
as a reference point/origin.

• Use the . . . . . . . . . . .sum and . . . . . . . . . . . . . .scalar . . . . . . . . . . . . . . . . . . . . .multiple of vectors to
complete a triangle.

• . . . . . . . . . . . . . . . . . . .Parallel vectors are . . . . . . . . . . . . . .scalar . . . . . . . . . . . . . . . . . . . . . .multiples of each
other.

• The . . . . . . . . .dot . . . . . . . . . . . . . . . . . . .product is zero when two . . . . . . . . .non - . . . . . . . . . .zero

vectors are at . . . . . . . . . . . .right . . . . . . . . . . . . . . .angles .

• The . . . . . . . .dot . . . . . . . . . . . . . . . . . . . .product may also allow access to the angle between
some of the vectors.

³ Steps

[Ex 8D Q2] å P , Q, R and S are midpoints of AB, BC, CD and DA respectively.

Let
#    »

AB = a
˜
,

#    »

BC = b
˜
and

#    »

AD = d
˜
and

#    »

DC = c
˜
.

A
B

C
D

b
PP

b QQ

b
RR

bSS

(a) Explain why a
˜
+ b
˜
= d
˜
+ c
˜
.

(b) Express
#    »

PQ in terms of a
˜
and b

˜
.

(c) Express
#   »

SR in terms of d
˜
and c

˜
.

(d) Hence show that
#    »

PQ =
#   »

SR.

(e) Deduce that the quadrilateral PQRS is
a parallelogram.

� Example 34
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Vector Geometry with the Dot Product – Other geometric proofs 35

(Pender et al., 2019) An interval AB with midpoint O subtends a right angle at point
P . P

OA B

Prove that a circle with diameter AB passes through P .

� Example 35

Commence by letting a
˜
=

#    »

OA and p
˜
=

#    »

OP .

V Important note
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36 Vector Geometry with the Dot Product – Other geometric proofs

[Ex 8D Q6] å In the diagram OABC is a parallelogram whose diagonals OB and
AC are equal. The points A and C have respective position vectors a

˜
and c

˜
relative

to O.

O A

C B

a
˜

c
˜

(a) Explain why
#    »

CB = a
˜
.

(b) Write
#    »

AC in terms of c
˜
and a

˜
.

(c) Explain why
∣∣c
˜
+ a
˜
∣∣ =

∣∣c
˜
− a
˜
∣∣.

(d) Use the result in the previous part, and the fact that
∣∣v
˜
∣∣2 = v

˜
· v
˜
, to show that

a
˜
· c
˜
= 0.

(e) What conclusions can be made about a parallelogram whose diagonals are
equal?

� Example 36
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Vector Geometry with the Dot Product – Other geometric proofs 37

[Ex 8D Q10] å Use vectors to prove that the sum of the squares of the lengths of
the two diagonals of a parallelogram is equal to the sum of the squares of the lengths
of the four sides.

� Example 37
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38 Vector Geometry with the Dot Product – Other geometric proofs

Given three points P (1, 2), Q(3, 3) and R(7,−1),

x

y

b

b

b

b

P (1, 2)

Q(3, 3)

R(7,−1)

M

1 2 3 4 5 6 7

1

2

3

(a) Express
#    »

OP ,
#    »

OQ and
#    »

OR in terms of i
˜
and j

˜
.

(b) If
#     »

QM =
1

4

#    »

QR, express
#    »

PQ and
#     »

OM in terms of i
˜
and j

˜
.

(c) Deduce that PQ ‖ OM .

Answer: (a)
#    »

OP = i
˜
+ 2 j

˜
,

#    »

OQ = 3 i
˜
+ 3 j

˜
,

#    »

OR = 7 i
˜
− j
˜
. (b)

#    »

PQ = 2 i
˜
+ j
˜
,

#      »

OM = 4 i
˜
+ 2 j

˜
.

� Example 38
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Vector Geometry with the Dot Product – Other geometric proofs 39

In the following figure, the position vectors of the points A and B with respect to the
origin are a

˜
and b

˜
respectively. They are unit vectors making angles α and β with

the positive direction of the x axis.

x

y

A

B

a
˜

b
˜

α β

Prove that:

(a) a
˜
= cosα i

˜
+ sinα j

˜
and b

˜
= cos β i

˜
+ sin β j

˜
(b) cos(α− β) = cosα cos β + sinα sin β.

� Example 39
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40 Vector Geometry with the Dot Product – Other geometric proofs

(So & Wong, 1987, Ex 12-5) In the figure, ACXW and BCY Z are squares.
#    »

CA = a
˜
,

#    »

CB = b
˜
,

#    »

CY = y
˜
and

#    »

CX = x
˜
.

W

CX

A B

Y

Z

x
˜

y
˜

a
˜

b
˜

(a) Prove that a
˜
· b
˜
+ y
˜
· x
˜
= 0.

(b) Deduce that AY ⊥ BX.

� Example 40
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Vector Geometry with the Dot Product – Other geometric proofs 41

o In the diagram, ABCD is a square with
#    »

AB = i
˜
and

#    »

AD = j
˜
. P and Q are

respectively points on AB and BC produced with BP = k and CQ = m. AQ and
DP intersect at E and ∠QEP = θ.

A

CD

B

Q

P
i
˜

j
˜

E

θ

(a) By calculating
#    »

AQ · #    »

DP , find cos θ in terms of m and k.

(b) Given that
DE

EP
=

1

4
,

i. Express
#    »

AE in terms of k.

ii. Let
AE

AQ
= r. Express

#    »

AE in terms of r and m.

iii. If θ = 90◦, use the results above to find the values of k, m and r.

Answer: (a) k−m√
(m2+2m+2)(k2+2k+2)

(b) i. 1+k

5
i
˜
+ 4

5
j
˜
ii. r i

˜
+ r(1 +m) j

˜
iii. r = 2

5
, m = k = 1

� Example 41
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42 Vector Geometry with the Dot Product – Other geometric proofs

Ex 3L (Haese et al., 2015)
(More introductory type questions)

• Every second question

Ex 8D (Pender et al., 2019)

• All questions

Î Further exercises
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Vector Geometry with the Dot Product – Projection of a vector on to another vector 43

3.4 Projection of a vector on to another vector

The projection of a vector a
˜
on another vector b

˜
is a vector parallel to b

˜
with the

following notation:
projb

˜
a
˜

In the diagram given,
#    »

OP is the projection of a
˜
on to b

˜
.

O

A

a
˜

Bb
˜

b

PPθ

Assumption: b
˜
is a . . . . . . . . .non . . . . . . . . . . .zero . . . . . . . . . . . . . . .vector .

� Definition 15

Plain English: the projection of vector a
˜
on to vector b

˜
is the . . . . . . . . . . . . . . . . . . . .‘shadow

. . . . . . . . . . .cast’ from . . .a˜
on to . . .b˜

V Important note

The projection of a
˜
on to b

˜
, b
˜
6= 0
˜
:

projb
˜
a
˜
=

(
a
˜
· b
˜∣∣b

˜
∣∣2

)
b
˜

. . . . . . . . . . . . . . . . . . . .

© Laws/Results

Projection of vector a
˜
on to b

˜

GeoGebra

NORMANHURST BOYS’ HIGH SCHOOL Introduction to Vectors
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44 Vector Geometry with the Dot Product – Projection of a vector on to another vector

The following diagrams are taken from Haese et al. (2015), explanations paraphrased:

• Consider a vector a
˜

in the

. . . . . . . . . . . . . . . . . . . . . . . .Cartesian plane.

• If a light is shone on to the vector from the

. . . . . . . . . . . .right , it will cast a . . . . . . . . . . . . . . . . . .shadow
on the y axis.

• This . . . . . . . . . . . . . . . . . . .shadow is the

. . . . . . . . . . . . . . . . . . . . . . . . .projection . . . . . . . . . . . . . . .vector of
a
˜
on the y axis

• Also known as the y component of the vector
a
˜
.

• If a
˜
=

(
2
3

)
, then projj

˜
a
˜
= 3j

˜. . .

• Similarly, if a light is shone from the

. . . . . . . .top , the . . . . . . . . . . . . . . . . . .shadow is the

. . . . . . . . . . . . . . . . . . . . . . . . .projection . . . . . . . . . . . . . . .vector of
a
˜
on the x axis.

• If a
˜
=

(
2
3

)
, then proji

˜
a
˜
= 2i

˜. . .

• If the light is shone through vector a
˜on to another vector b

˜
so that the light

is . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .perpendicular to b
˜
,

the . . . . . . . . . . . . . . . . . .shadow cast on b
˜

is the

. . . . . . . . . . . . . . . . . . . . . . . . .projection . . . . . . . . . . . . . . .vector of
a
˜
on to b

˜
.

L Fill in the spaces

Introduction to Vectors NORMANHURST BOYS’ HIGH SCHOOL



Vector Geometry with the Dot Product – Projection of a vector on to another vector 45

3.4.1 Derivation

Consider the diagram:

b
˜

Q

a
˜

bQ′Q′

b
P ′P ′

projb
˜
a
˜

b
PP

θ

• Suppose θ is the acute angle between a
˜and b

˜
.

• Give the relationship between PQ, |a|
and θ:

PQ∣∣a
˜
∣∣ = cos θ. . . . . . . . .

∴ PQ =
∣∣a
˜
∣∣ cos θ

. . . . . . . . . . . . . . . .

• As projb
˜
a
˜
is a vector in the same . . . . . . . . . . . . . . . . . . . . . .direction to b

˜
, it is also the unit vector

in b
˜
’s direction, multiplied by a scalar multiple:∗

projb
˜
a
˜
= PQ

. . . . . . .
b̂
˜

=
∣∣a
˜
cos θ

∣∣
. . . . . . . . . . . . . . . .
︸ ︷︷ ︸

scalar multiple, ‘magnitude’

b̂
˜

=
∣∣a
˜
∣∣ |cos θ|

. . . . . . . . . . . . . . . . . .

b
˜∣∣b
˜
∣∣

(‡)

• Recall also, that a
˜
· b
˜
=

∣∣a
˜
∣∣ ∣∣b
˜
∣∣ cos θ

. . . . . . . . . . . . . . . . . . . . . .
, rearranging:

cos θ =
a
˜
· b
˜∣∣a

˜
∣∣ ∣∣b
˜
∣∣

. . . . . . . . . . . . .

Substitute in the result from (‡):

projb
˜
a
˜
= �

�
∣∣a
˜
∣∣ a˜

· b
˜

�
�
∣∣a
˜
∣∣ ∣∣b
˜
∣∣
b
˜∣∣b
˜
∣∣

. . . . . . . . . . . . . . . . . . . . . . . . .

=
a
˜
· b
˜∣∣b

˜
∣∣2 b˜

The projection of vector a
˜
on to vector b

˜
:

projb
˜
a
˜
=

a
˜
· b
˜∣∣b

˜
∣∣2 b˜

=
a
˜
· b
˜

b
˜
· b
˜
b
˜

© Laws/Results

∗See Section 2.1.1 on page 13
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46 Vector Geometry with the Dot Product – Projection of a vector on to another vector

3.4.2 Examples and proofs

Find the projection of a
˜
=

(
2
3

)
on to b

˜
=

(
−3
5

)
, and state the length of the vector.

Answer: projb
˜
a
˜
= 9

34

(
−3
5

)
, length 9√

34

� Example 42

[2020 JRAHS Ext 1 Trial Q11] It is given that A(−2, 3), B(4,−5), C(−7,−6) and
D(−5,−2).

i. Find the vector projection of
#    »

AB on to
#    »

CD. 2

ii. What is the vector component of
#    »

AB perpendicular to
#    »

CD? 1

� Example 43
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Vector Geometry with the Dot Product – Projection of a vector on to another vector 47

[2022 Ext 1 HSC Q6] The following diagram shows the vector u
˜
and the vectors

i
˜
+ j
˜
, −i
˜
+ j
˜
, −i
˜
− j
˜
and i

˜
− j
˜
.

x

y

i
˜
+ j
˜

i
˜
− j
˜

−i
˜
− j
˜

−i
˜
+ j
˜

u
˜

(Drawn to scale)
Which statement regarding this diagram could be true?

(A) The projection of u
˜
onto i

˜
+ j
˜
is the vector 1.1 i

˜
+ 1.8 j

˜
.

(B) The projection of u
˜
onto −i

˜
+ j
˜
is the vector −0.4 i

˜
+ 0.4 j

˜
.

(C) The projection of u
˜
onto −i

˜
− j
˜
is the vector 3.2 i

˜
+ 3.2 j

˜
.

(D) The projection of u
˜
onto i

˜
− j
˜
is the vector 0.5 i

˜
− 0.5 j

˜
.

� Example 44
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48 Vector Geometry with the Dot Product – Projection of a vector on to another vector

[2022 Ext 1 HSC Q14] (3 marks) The vectors u
˜
and v

˜
are not parallel. The vector

p
˜
is the projection of u

˜
onto the vector v

˜
.

The vector p
˜
is parallel to v

˜
so it can be written as λ0v˜

for some real number λ0.

(Do NOT prove this).

Prove that
∣∣u
˜
− λv
˜
∣∣ is smallest when λ = λ0 by showing that, for all real numbers λ,∣∣u

˜
− λ0v˜

∣∣ ≤
∣∣u
˜
− λv
˜
∣∣.

� Example 45

Ex 3K (Haese et al., 2015)
(More introductory type questions)

• Every second subpart

Ex 8E (Pender et al., 2019)

• All questions

Î Further exercises
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Section A

Past examination questions

• Most questions in this section originate from various VCEs.

• Two additional terms which are not used in the NSW Syllabuses but have equivalents:

Vector resolute is synonymous with the the vector projection.

� Definition 16

Scalar projection is the length of the vector projection, with a negative sign if the
projection has an opposite direction with respect to b

˜

� Definition 17

A.1 2006 VCE Specialist Mathematics

A.1.1 Paper 2 Section 1

15. In the parallelogram shown,
∣∣a
˜
∣∣ = 2

∣∣b
˜
∣∣.

Which one of the following statements is true?

1

(A) a
˜
= 2b
˜

(B) a
˜
+ b
˜
= c
˜
+ d
˜

(C) b
˜
− d
˜
= 0
˜

(D) a
˜
+ c
˜
= 0
˜

(E) a
˜
− b
˜
= c
˜
− d
˜

49



50 Past examination questions – 2008 VCE Specialist Mathematics

A.1.2 Paper 2 Section 2

Question 8

Point A has position vector a
˜
= − i

˜
− 4 j
˜
, point B has position vector b

˜
= 2 i
˜
− 5 j
˜
,

point C has position vector c
˜
= 5 i
˜
−4 j
˜
, and point D has position vector d

˜
= 2 i
˜
+5 j
˜relative to the origin O.

(a) Show that
#    »

AC and
#    »

BD are perpendicular. 2

(b) Use a vector method to find the cosine of ∠ADC, the angle between
#    »

DA and
#    »

DC.
2

(c) Find the cosine of ∠ABC, and hence show that ∠ADC and ∠ABC are
supplementary.

3

Point P has position vector p
˜
= 2i
˜
.

(d) Use the cosine of ∠APC and an appropriate trigonometric formula to prove
that ∠APC = 2∠ADC.

3

A.2 2008 VCE Specialist Mathematics

A.2.1 Paper 2 Section 1

17. If P,Q and R are three collinear points with position vectors p
˜
, q
˜

and r
˜

respectively, where Q lies between P and R. If
∣∣∣ #    »

QR
∣∣∣ =

1

2

∣∣∣ #    »

PQ
∣∣∣, then r

˜
is

equal to

1

(A)
3

2
q
˜
− 1

2
p
˜

(B)
3

2
p
˜
− 1

2
q
˜

(C)
3

2
q
˜
− 3

2
p
˜

(D)
1

2
p
˜
− 3

2
q
˜

(E)
3

2
p
˜
− 3

2
q
˜
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Past examination questions – 2009 VCE Specialist Mathematics 51

A.3 2009 VCE Specialist Mathematics

A.3.1 Paper 2 Section 1

17. Vectors a
˜
, b
˜
and c

˜
are shown below.

c
˜

a
˜

b
˜

120◦

From the diagram it follows that

(A)
∣∣c
˜
∣∣2 =

∣∣a
˜
∣∣2 +

∣∣b
˜
∣∣2

(B)
∣∣c
˜
∣∣2 =

∣∣a
˜
∣∣2 +

∣∣b
˜
∣∣2 −

∣∣a
˜
∣∣ ∣∣b
˜
∣∣

(C)
∣∣c
˜
∣∣2 =

∣∣a
˜
∣∣2 +

∣∣b
˜
∣∣2 +

∣∣a
˜
· b
˜
∣∣

(D)
∣∣c
˜
∣∣2 =

∣∣a
˜
∣∣2 +

∣∣b
˜
∣∣2 +

∣∣a
˜
∣∣ ∣∣b
˜
∣∣

(E)
∣∣c
˜
∣∣2 =

∣∣a
˜
∣∣2 +

∣∣b
˜
∣∣2 −

∣∣a
˜
· b
˜
∣∣

1

A.4 2011 VCE Specialist Mathematics

A.4.1 Paper 2 Section 1

10. The diagram below shows a rhombus, spanned by the two vectors a
˜
and b

˜
.

b
˜

a
˜

It follows that

1

(A) a
˜
· b
˜
= 0

(B) a
˜
= b
˜

(C) (a
˜
+ b
˜
) · (a
˜
− b
˜
) = 0 (D)

∣∣a
˜
+ b
˜
∣∣ =

∣∣a
˜
− b
˜
∣∣

(E) 2a
˜
+ 2b
˜
= 0
˜

A.5 2018 VCE Specialist Mathematics

A.5.1 Paper 2 Section 1

11. Consider the vectors given by a
˜
= m i

˜
+ j
˜
and b

˜
= i
˜
+m j

˜
, where m ∈ R. If the

acute angle between a
˜
and b

˜
is 30◦, then m equals

(A)
√
2± 1

(B) 2±
√
3

(C)
√
3,

1√
3

(D)

√
3

4−
√
3

(E)

√
39

13

1
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52 Past examination questions – 2020 Ext 1 HSC

12. If
∣∣a
˜
+ b
˜
∣∣ =

∣∣a
˜
∣∣ +

∣∣b
˜
∣∣ and a

˜
, b
˜
6= 0, which one of the following is necessarily

true?

(A) a
˜
is parallel to b

˜
(B)

∣∣a
˜
∣∣ =

∣∣b
˜
∣∣

(C) a
˜
= b
˜

(D) a
˜
= −b

˜
(E) a

˜
is perpendicular to b

˜

1

A.6 2020 Ext 1 HSC

4. Maria starts at the origin and walks along all of the vector 2 i
˜
+ 3 j
˜
, then walks

along all of the vector 3 i
˜
− 2 j
˜
and finally along all of the vector 4 i

˜
− 3 j
˜
.

How far from the origin is she?

(A)
√
77

(B)
√
85

(C) 2
√
13 +

√
5

(D)
√
5 +

√
7 +

√
13

1

6. The vectors a
˜
and b

˜
are shown.

a
˜

b
˜

Which diagram below shows the vector v
˜
= a
˜
− b
˜
?

(A)

a
˜

b
˜

v
˜

(B)

a
˜

v
˜

b
˜

(C)

v
˜

b
˜

a
˜

(D)

a
˜

b
˜

v
˜

1

9. The projection of the vector

(
6
7

)
on to the line y = 2x is

(
4
8

)
.

The point (6, 7) is reflected in the line y = 2x to a point A.

What is the position vector of the point A?

(A)

(
6
12

)
(B)

(
2
9

)
(C)

(
−6
7

)
(D)

(
−2
1

)

1
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Past examination questions – 2020 Ext 2 HSC 53

Question 11

(b) For what value(s) of a are the vectors

(
a
−1

)
and

(
2a− 3

2

)
perpendicular? 3

A.7 2020 Ext 2 HSC

This question does not contain any Extension 2 specific content, and so is placed in this
summary instead.

Question 15

(b) The point C divides the interval AB so that
CB

AC
=

m

n
. The position vectors

of A and B are a
˜
and b

˜
respectively, as shown in the diagram.

a
b

A
C

O

B

i. Show that
#    »

AC =
n

m+ n

(
b
˜
− a
˜
)
. 2

ii. Prove that
#    »

OC =
m

m+ n
a
˜
+

n

m+ n
b
˜
. 1

Let OPQR be a parallelogram with
#    »

OP = p
˜
and

#    »

OR = r
˜
. The point S is

the midpoint of QR and T is the intersection of PR And OS, as shown in
the diagram.

P

O R

ST

Q

p

r

iii. Show that
#   »

OT =
2

3
r
˜
+

1

3
p
˜
. 3

iv. Using parts (ii) and (iii), or otherwise, prove that T is the point that
divides the interval PR in the ratio 2 : 1.

1
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A.8 2021 Ext 1 HSC

Question 14

(a) A plane needs to travel to a destination that is on a bearing of 063◦. The
engine is set to fly at a constant 175 km/h. However, there is a wind from
the south with a constant speed of 42 km/h.

On what constant bearing, to the nearest degree, should the direction of the
plane be set in order to reach the destination? Answer: 075◦

3

(c) i. For vector v
˜
, show that v

˜
· v
˜
=
∣∣v
˜
∣∣2. 1

ii. In the trapezium ABCD, BC is parallel to AD and
∣∣∣ #    »

AC
∣∣∣ =

∣∣∣ #    »

BD
∣∣∣.

B C

NOT TO

SCALE

A D

Let a
˜
=

#    »

AB, b
˜
=

#    »

BC and
#    »

AD = k
#    »

BC, where k > 0.

Using part (i) or otherwise, show 2a
˜
· b
˜
+ (1− k)

∣∣b
˜
∣∣2 = 0.

3

A.9 2022 Ext 1 HSC

8. The angle between two unit vectors a
˜
and b

˜
is θ and

∣∣a
˜
+ b
˜
∣∣ < 1.

Which of the following best describes the possible range of values of θ?

(A) 0 ≤ θ <
π

3

(B) 0 ≤ θ <
2π

3

(C)
π

3
< θ ≤ π

(D)
2π

3
< θ ≤ π

Note: attempt this after Topic 9
(Radians) has been completed.

1
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Question 13

(a) Three different points A, B and C are chosen on a circle centred at O.

Let a
˜
=

#    »

OA, b
˜
=

#    »

OB and c
˜
=

#    »

OC. Let h
˜
= a
˜
+b
˜
+ c
˜
and let H be the point

such that
#    »

OH = h
˜
, as shown in the diagram.

A

B

C

H

O

NOT

TO

SCALE

h

a

b

c

Show that
#     »

BH and
#    »

CA are perpendicular.

3

A.10 2023 Ext 1 HSC

6. Given two non-zero vectors a
˜
and b

˜
, let c

˜
be the projection of a

˜
onto b

˜
.

What is the projection of 10a
˜
onto 2b

˜
?

(A) 2c
˜

(B) 5c
˜

(C) 10c
˜

(D) 20c
˜

1
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56 Past examination questions – 2023 Ext 1 HSC

Question 14

(c) i. Given a non-zero vector

(
p
q

)
, it is known that the vector

(
q
−p

)
is

perpendicular to

(
p
q

)
and has the same magnitude. (Do NOT prove

this).

Points A and B have position vectors
#    »

OA =

(
a1
a2

)
and

#    »

OB =

(
b1
b2

)
,

respectively.

Using the given information, or otherwise, show that the area of △OAB

is
1

2
|a1b2 − a2b1|.

3

ii. The point P lies on the circle centred at I(r, 0) with radius r > 0, such

that
#  »

IP makes an angle of t to the horizontal.

The point Q lies on the circle centred at J(−R, 0) with radius 2t to the
horizontal.

O

y

P

t2t

Q

IrJ R x

Note that
#    »

OP =
#  »

OI +
#  »

IP and
#    »

OQ =
#   »

OJ +
#   »

JQ.

Using part (i), or otherwise, find the values of t, where −π ≤ t ≤ π,
that maximise the area of △OPQ.

4
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A.11 2024 NBHS Assessment Task 1

Question 4

(a) The diagram shows △ABC, and the line 2x+ y = 8 with x and y intercepts
at A and B respectively. The point C has coordinates (7, 4) and N is a point
on AB such that CN ⊥ AB.

x

y

b

AA

bBB

C(7, 4)b

b
NN

2x+ y = 8

i. Show that
#    »

BA =

(
4
−8

)
and

#    »

BC =

(
7
−4

)
. 2

ii. By using vector methods, show that

cos∠ABC =
3√
13

2

iii. Find a vector u
˜
=

(
u1

u2

)
such that u

˜
is perpendicular to

#    »

BA. 1

iv. Hence show that
#    »

NC =

(
4
2

) 2

v. Use vector methods to find the coordinates of N . 1

Question continues overleaf...
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A line ℓ with equation ax + by + c = 0 is drawn in the Cartesian plane,
and P (x0, y0) is located off the line ℓ, and point Q has coordinates Q (x1, y1)
which lies on the line ℓ. N is a point that is located on the line ℓ such that
PN ⊥ AB.

x

y

b

AA

bBB

P (x0, y0)b

b
NN

ax+ by + c = 0

Q (x1, y1)
b

You are given that v
˜
=

(
a
b

)
is a vector that is perpendicular to

#    »

BA (Do

NOT prove this).

vi. By finding
#    »

QP using the coordinates given, show that

#    »

NP =
ax0 + by0 + c√

a2 + b2
v̂
˜

3

vii. Briefly explain why the shortest distance from a point (x0, y0) to a line
ax+ by + c = 0 is given by

|ax0 + by0 + c|√
a2 + b2

1

Answers

iii. Any scalar multiple of

(
2
1

)

iv. Show

v. (3, 2)

vi. Hint: use ax1 + by1 + c = 0

vii.Show. Insufficient to state the
perpendicular distance formula.
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